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Abstract

Additive manufacturing of thin structures by powder bed fusion (PBF) presents challenges related to melt pool instability 
and thermal stress accumulation, which often lead to morphological defects and print failures. In this work, we investigate 
the influence of different scan strategies—continuous scanning in fixed and alternating directions, and spot melting—on the 
morphology and stability of single-track-thick walls using high-fidelity, three-dimensional mesoscopic simulations of the 
electron beam PBF (PBF-EB) process. The simulations describe melt pool dynamics and heat transfer with a micron resolu-
tion using a thermal lattice Boltzmann method coupled with additional physical models and methods required for the mul-
tilayer PBF-EB simulation. Our results show that during spot melting, the hydrodynamic instabilities are suppressed, which 
enables the formation of defect-free ultrathin walls. This effect is explained by the observed differences in melt pool dynamics 
between continuous and spot melting strategies. These findings demonstrate the potential of spot melting for high-resolution 
metal additive manufacturing and provide insights into simulation and experimental techniques for spot melting in PBF.

1 Introduction

Powder bed fusion (PBF) is a manufacturing method capable 
of producing parts with complex geometries. Lightweight 
structures, such as thin walls, lattices, and bio-inspired 

designs, are of particular interest due to their potential appli-
cations in aerospace, biomedical, and energy sectors [1–3]. 
Single-track thickness or ultrathin walls are attractive in 
terms of achieving high weight-to-surface area ratio [4, 5]. 
However, experimental studies report a lower limit on wall 
thickness [6, 7] below which the production of stable, con-
tinuous structures becomes challenging.

The limitations arise from several factors. The primary 
cause is melt pool instability [8]. During continuous scan-
ning, the melt pool tends to elongate and becomes suscep-
tible to hydrodynamic effects, such as Marangoni-driven 
flow and Plateau–Rayleigh instability. These phenomena 
can result in non-uniform material fusion and morphological 
defects. Another reported cause of melt pool instability [9] 
is melt overheating, which leads to excessive evaporation 
and recoil pressure, further destabilizing the melt pool. A 
separate issue relates to thermomechanical effects. Uneven 
heat input during the thin-wall build can induce wall distor-
tion and cracking [10].

A possible approach to mitigate these effects is the use 
of more complex scan strategies, as opposed to a single 
continuous line scan at each layer. In the spot melting scan 
strategy, energy input is applied as a sequence of short dura-
tion, spatially separated beam pulses [11]. The study by [12] 
reports that this approach helps to localize the melt region, 
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reduce convective transport, and distribute heat more uni-
formly across the layer. In [9], an alternative approach was 
employed, where, in each layer, a single line was repeated 
several times with a correspondingly increased scanning 
velocity, also helping to suppress melt pool dynamics 
instabilities.

In this work, we consider the electron beam powder bed 
fusion (PBF-EB) process employing a spot melting approach 
for the fabrication of ultrathin walls with a thickness in 
the range of 200–250 μ m, which is below reported limit-
ing thickness [6, 7]. Inconel 625, a nickel-based superalloy 
widely used in additive manufacturing, is selected as the 
material for this investigation. To focus on the underlying 
physical phenomena, three-dimensional mesoscopic simula-
tions of PBF-EB process are performed, resolving melt pool 
dynamics and heat transfer at the powder particle scale [13, 
14]. Three scan strategies are simulated: continuous scan-
ning in fixed and alternating directions, and spot melting. 
The results are analyzed in terms of differences in the melt 
pool dynamics, temperature history, and resulting wall-
height profile across multiple layers.

2  Methods

2.1  PBF-EB numerical model

The additive manufacturing process is modeled at a melt 
pool level using the KiSSAM [15] simulation package, 
which includes models for the powder bed fusion and pow-
der deposition processes.

A free surface thermal lattice Boltzmann method 
(LBM) [16] is a core method of KiSSAM. This method 
solves the governing equations of fluid dynamics and heat 
transfer on a uniform Cartesian mesh (melt pool grid) using 
the D3Q27 lattice model, with the liquid interface tracked 
via a volume-of-fluid approach.

A dynamic mesh is used, updated accordingly to focus 
computational resources on the region surrounding the 
molten material. Thermal transport as well as fluid dynam-
ics is modeled with the thermal LBM in the vicinity of the 
melt (melt pool grid). On a coarser grid that extends beyond 
it, the heat equation is solved using the finite-difference 
scheme. This configuration maintains high accuracy in cap-
turing the fluid dynamics while allowing temperature evolu-
tion to be solved over a larger scale domain.

Pressure boundary conditions are applied at the liquid-
free surface, and adiabatic boundary conditions are imposed 
for the heat equation.

Additional physical phenomena proven to play a signifi-
cant role in the powder bed fusion process are taken into 
account [17]. Surface tension and wetting phenomena are 
approximated using a template-sphere model [16] extended 

to three dimensions. The simulation includes models for 
Marangoni convection [18], radiation cooling, and drag in 
the mushy zone [19]. Evaporation is also taken into account 
by estimating the corresponding mass and energy losses and 
calculating the recoil pressure acting on the surface [20, 21]. 
For electron propagation, a ray tracing method is used with 
the Monte Carlo model of electron scattering [22, 23].

Powder spreading is modeled using PowDEM, a dis-
crete element (DEM) module [24] bundled with KiSSAM. 
Spherical mono- and polydisperse powders are considered. 
Gravity-fed and recoater-fed recoating can be simulated. 
The recoater interaction with the built part is neglected as 
it appears to be important for thin walls with the thickness 
less than 100 µm, as shown in [25].

KiSSAM and PowDEM are written on CUDA C++ and 
they run on NVIDIA graphics processing units (GPUs). Fur-
ther technical details of the implemented models, numerical 
schemes and algorithms are published in the article describ-
ing the KiSSAM framework [26] and in the software docu-
mentation (http:// www. kissam. cloud/ physi cal [15]).

2.1.1  Multilayer simulation

The simulation of several layers of corresponding part fab-
rication is carried out in the following stages.

The process begins with the deposition of powder onto a 
substrate of a given shape, which is simulated in PowDEM. 
Subsequently, the preheating and melting phases are dis-
tinguished. The preheating phase and the sintering of the 
powder are not simulated directly; instead, a uniform initial 
temperature corresponding to the preheating temperature is 
assigned to the numerical domain at the start of each layer 
and solid powder particles remain immobile during the 
melting phase, as implied by prior sintering. The melting 
and solidification dynamics, fluid flow, and heat transfer are 
modeled in KiSSAM as described in Sect. 2.1.

Once the melt has fully solidified, the resulting solid frac-
tion field is processed to extract a surface representation. 
The resulting mesh then serves as the substrate for the next 
powder layer.

This cycle of powder spreading, melting, solidification, 
and surface extraction is repeated to simulate the desired 
number of layers.

2.2  Material parameters

Simulations are carried out for the Inconel 625 alloy. The 
thermophysical properties used in the numerical model are 
summarized in Table 1 in the Appendix. These parameters 
have been extensively validated in the prior works [8, 27]. 
With this parameters set, the model has shown good agree-
ment with the experimental results for single-track geom-
etries, including track depth and width, as well as for key 
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melting regimes, such as balling and keyholing [27]. Fur-
thermore, the same material description has demonstrated 
predictive capability for the formation and morphology of 
thin-walled structures fabricated by laser-based PBF [8].

3  Problem statement

In this study, Inconel 625 material is used for the substrate 
and the powder with a particle size range of 45–105 μ m. 
The constant preheating temperature Tpreheat = 1000 K is 
assumed to be the initial condition before the start of each 
layer scan.

An electron beam is used with a power of P = 270 W, 
corresponding to a voltage of U = 60 kV and a current of 
I = 4.5 mA. The Gaussian beam is considered having a 
spot size of D

4�
= 250 μ m. Such spot size is selected to 

simulate thin walls with a target thickness of approximately 
200–250 μm.

The printed structures are ultrathin walls, built with a 
single track per layer. Each track length is L

scan
= 5 mm, 

and the platform step between layers is 50 μ m. 25 layers are 
simulated.

Three scanning strategies are examined: (i) continuous 
scan with the same scan direction in each layer (FF), (ii) 
continuous scan with alternating scan direction in each layer 
(BF), and (iii) spot melting scan with the same spot sequence 
in each layer (SM). Figure 1 explains differences between FF 
and BF scan strategies.

The following beam scanning speed is used for BF and 
FF scan strategies: S = 0.6 m/s. Scanning time at each layer 
t
scan

= L
scan

∕S ≈ 8.33 ms. In case of the SM scan strategy, 
same total scanning time t

scan
 is kept at each layer.

For the SM scan strategy, the following jumping spot 
sequence is selected, in which scheme is shown in Fig. 2. 
The distance between the nearest spots is d

s
= 100 μ m result-

ing in overall number of spots Nspots = ⌈Lscan∕d
s
⌉ = 51 . An 

exposure time for each spot is texp = tscan∕Nspots ≈ 163.4 µs. 
The jump distance is dj = 500 μ m. The jump duration 
between the next spots is assumed to be negligibly short. 
Figure 3 illustrates the beam scan path in the x–t diagram, 
where x represents the scanning direction and t denotes the 
time elapsed during the layer-wise scan.

3.1  Numerical parameters and domain

The lattice size in the melt pool grid is 4 µm is used; the 
time step is 50 ns. The total domain size is 7 mm × 2 mm × 
4 mm. The substrate thickness is 2 mm. Cartezian coordi-
nate system will be used in the following sections, with the 
origin corresponding to the start of the wall scan at the first 
layer and x axis associated with the scanning direction. It is 
illustrated in Fig. 4.

3.2  Computational resources

All simulations were carried out on a computer equipped 
with 8 NVIDIA RTX 3090 graphics processing units, each 
featuring 24 GB of onboard memory. The single multilayer 
simulation was run on a single GPU. Typical time of simula-
tion of one layer is 5 h. Full set of simulations (3 × 25 layers) 
lasted about a week using 3 GPUs.

4  Results

4.1  Melt pool dynamics and layer-wise melt pool 
stability

In Fig. 5, the melt pool is captured for different layers of 
the build at the same time moment from the corresponding 
layer scan beginning. The time moment is chosen when the 
melt pool is well developed. Shades of orange represent the 
liquid in Fig. 5.

Starting from the very first layer, the melt pool formed 
during the FF and BF scans exhibits a typical elongated 
shape aligned with the scan direction. In contrast, during 
the SM scan, the melt pool consists of several short melt 
spots. At higher layers, these individual melted spots begin 
to merge; however, this merging does not significantly desta-
bilize the overall melt pool.

For the FF case, the beam path is identical at each layer, 
so is the melt pool flow direction, which is known to be Fig. 1  FF and BF scan patterns

Fig. 2  Scheme of spot sequence explained on a short track example
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mainly opposite to the beam path. This leads to a higher 
wall height at the beginning of the scan (see Figs. 5 and 6) 
and a lack-of-fusion pores formation closer to the end of the 
scan (Fig. 6).

For the BF case, no asymmetry is observed for the wall 
profile at the edges compared to the FF scan. This is because 
of the change in the scan direction at every layer. However, 
the longer melt pool is still prone to hydrodynamic instabili-
ties, in particular the Plateau–Rayleigh instability. Melt pool 
breakup can be seen for the BF case in Fig. 5. Once formed 
in the central region of the wall, the wall profile perturbation 
turns into a defect, as shown in Fig. 6 for the BF scan.

Finally, for the SM case, the spot melting scan strategy 
helps solve both problems. The melt is split into several 
short melt regions, which significantly reduces mass transfer 
and benefits in overall melt stability.

Fig. 3  x–t diagram of beam scan 
path in case of spot melting

Fig. 4  Schematic of the simulation domain. The wall is represented 
by dotted lines

Fig. 5  Melt pool at time moment t = 7.5 × 10−3 s from the scan start at the corresponding layer—1 (bottom), 5 (middle), and 10 (top). Left col-
umn: FF scan, center: BF scan (FF and BF are identical for the first layer), right: SM scan
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4.2  Temperature history

To examine the temperature history, a set of 25 tempera-
ture probes was introduced, placed in the following posi-
tions in the numerical domain, described by the following 
formula (1):

First, let us examine the first layer of the build in detail.
In Fig. 7, we study the time evolution of the temperature 

captured in the point P
1
 . Figure 8 shows the temperature 

distribution in space along the line parallel to the x axis 
drawn through the point P

1
 at a specified time moment 

t = 7.5 × 10−3 s from the start of the scan, when the scan-
ning is close to the end of the track for the FF strategy.

As expected, Figs. 7 and 8 demonstrate that the heat is 
distributed more uniformly along the track during the SM 
scan. Note that for the same probe position, the tempera-
ture does not exceed the liquidus temperature Tliquidus for 
the SM case.

(1)P
i
= (2.5, 0.0,−0.1 + 0.05i) mm, i = 1, 25.

Qualitatively, similar behavior is observed across suc-
cessive layers of the wall, as shown in Fig. 9. However, the 
temperature histories recorded at different layers by the cor-
responding probes do not coincide exactly. For example, the 
absence of peaks above the melting point in the FF scans for 
layers 5 and 9 and the notable difference in the temperature 
curve for SM layer 17 stand out. This can be explained by 
the uniform probe positioning, where the first probe is placed 
50 μ deep in the substrate at Layer 1, and each subsequent 
probe is raised by a constant platform step of 50 μ per layer 
[see Eq. (1)]. However, variations in the wall-height profile 
and temperature distribution between layers, particularly in 
the less stable FF case, result in these observed differences.

5  Discussion

In the present work, irregularities in the wall-height profile 
are attributed to surface tension and wetting forces, which 
can trigger melt pool instabilities of the Plateau–Rayleigh 
type. This mechanism was first proposed in  [8] for the 

Fig. 6  Top: FF scan, middle: BF scan, and bottom: SM scan. Left: cross-section; right: longitudinal section through the middle of the wall (25 
layers) is shown. Color indicates the material fused to the thin wall in the corresponding layer. Substrate is dark gray; powder is light gray
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PBF-L process, where the wall thickness was 100–150 μ m 
and the number of layers was 10. The results obtained in the 
present study for the FF case are qualitatively consistent with 
those simulated in [8] and experimentally confirmed in [28], 
both showing a pronounced elevation at the beginning of the 

wall (where the laser scan is initiated in each layer) and a 
lack-of-fusion region at the end of the wall. These similari-
ties indicate that, despite differences in process parameters 
and scale, certain instability mechanisms remain relevant 
across multiple PBF conditions.

Fig. 7  Temperature history for 
SM and continuous (FF) scan. 
First layer is shown; tem-
perature probe P

1
 is used (see 

Eq. (1))

Fig. 8  Temperature distribution 
along the track under the laser 
scan path at a depth of 50 μ in 
the substrate. Time moment 
t = 7.5 × 10−3 s; first layer of 
the build is shown
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Semjatov, Wahlmann, and Körner [9] proposed a dif-
ferent primary mechanism for thin-wall instability and 
surface roughness, namely melt overheating, leading to 
excessive evaporation and recoil pressure that destabi-
lize the melt pool. There are two key differences in the 
problem statement between Semjatov et al. [9] and the 
present study: (i) the target wall thickness is 200–250 
μ m in our work versus approximately 1 mm in Semjatov 
et al., and (ii) the number of layers is 25 in our case versus 
several hundred in theirs. The profile roughness reported 
by Semjatov et al. reached up to 200 μ m for the continu-
ous single line builds. These distinctions suggest that the 
relative importance of different instability mechanisms 
may depend strongly on the geometric scale of the build, 
highlighting the need for a dedicated parametric study as 
a promising topic for future research. Beyond that, the 
instabilities observed during the first few layers in our 
simulations may diminish as the build height increases. 
Investigating how these early stage instabilities evolve 
over hundreds of layers is an additional interesting direc-
tion for future work.

Both the present work and Semjatov et al. report a pro-
gressive reduction in melt pool instability when imple-
menting a complex scan strategy, although the underlying 
explanations differ. In our interpretation, spot melting sta-
bilizes the melt pool by effectively dividing it into smaller, 
more stable ones. Semjatov et al. attributed the improved 
geometry in their multiple-interaction approach primarily to 
reduced evaporation resulting from lower melt overheating. 
While this represents a different mechanism, it is neverthe-
less complementary to our findings. The relative contribu-
tion of each mechanism likely depends on the specific pro-
cessing conditions, and clarifying this dependence remains 
an important direction for future research.

6  Conclusion

Three thin-wall structures were simulated at the mesoscale 
using the KiSSAM software. Powder spreading was mod-
eled via the discrete element method (DEM), whereas the 
melting stage was resolved using a D3Q27 free-surface 
thermal lattice Boltzmann method. All simulations were 
performed under identical parameters, differing solely in 
the scan strategy: two employed continuous scanning and 
one utilized a spot melting approach.

The results indicate that wall morphology is highly 
sensitive to the scan strategy employed. In this specific 
setup, the spot melting approach yielded more uniform 
wall geometry and smoother surface profiles compared to 
continuous scanning.

This difference is attributed to melt pool dynamics. 
Unlike continuous scanning, which generates a longer, less 
stable melt pool prone to hydrodynamic instabilities, spot 
melting creates a sequence of shorter, more stable melt 
pools, contributing to improved geometric uniformity and 
reduced surface irregularities.

Additionally, spot melting leads to a more even energy 
distribution along the scan path, resulting in a more uni-
form wall heating, which could lead to different thermo-
mechanical characteristics of thin walls built by continu-
ous line melting and spot melting.

While these findings highlight potential benefits of spot 
melting, more research is needed to recognize possible 
limitations and trade-offs, which may vary with different 
process conditions or geometries.

From a modeling perspective, the results demonstrate 
the necessity of resolving mesoscopic structures at the 
melt pool scale, including free-surface dynamics and wet-
ting behavior, to accurately represent the critical physical 

Fig. 9  Layerwise temperature history for FF case (left) and SM case (right). For the i-th layer, a probe P
i
 is used with the probe coordinates 

defined by the Eq. (1)
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processes involved in defect formation during thin-wall 
builds.

Further study is required to assess the influence of spot 
melting on microstructure evolution, thermal stress develop-
ment, and to explore a broader parameter space for process 
optimization. A comparison with alternative scanning strate-
gies aimed at eliminating non-uniform heating would be of 
significant interest.

Comparison with experimental results for the current 
findings remains essential. This study primarily contributes 
to revealing the underlying physical mechanisms through 
numerical simulation at the melt pool scale, thereby provid-
ing a foundation for future targeted experimental and com-
putational investigations.

Appendix

See Table 1.
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Table 1  Properties of the 
Inconel 625 alloy for the 
simulations

T is the temperature in K

Atomic number 28

Atomic mass (Da) 58.7

Liquidus temperature Tliquidus (K) 1623

Solidus temperature T
solidus

 (K) 1563

Density at Tliquidus (kg/m3) 8000

Viscosity � (m2/s) 0.7 × 10
−6

Surface tension � (N/m) 2.4470−3.5000 × 10−4 T (K)

Wetting angle with substrate surface (°) 0

Wetting angle with powder particles (°) 105

Diffusivity in solid phase (m2/s) 2.31400 × 10
−6

+ 2.0000 × 10
−9 T (K)

Diffusivity in liquid phase (m2/s) 2.43400 × 10
−6

+ 2.0000 × 10
−9 T (K)

Isobaric volumetric heat capacity (J/m3/K) ⎧
⎪
⎨
⎪
⎩

4.00 × 106, if 0K < T ≤ 900 K

5.50 × 106, if 900 K < T ≤ 1563 K

6.00 × 106, if T > 1563 K

Latent heat of fusion (J/m3) 2.656 × 109

Saturated vapor pressure (Antoine equation)

P
sat
(T) = 10

A−B∕(C+T∕K) Pa, where

A 11.672

B 20765.0

C 0
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